home *** CD-ROM | disk | FTP | other *** search
- >8.Absolute value. (Cases)
- |x-1|=2x
- MYSZEK 2xy
- EXAMPLE
- e
- t101
- p10
- t0
- zr
- t1
- p6
- t0
- v500
- zrm
- k|
- t2
- p2
- t0
- k|m
- cxm
- k-m
- c1m
- k|m
- k=m
- c2m
- cxm
- ke
- t3
- p4
- t0
- kem
- p10
- oxm
-
- shm
- k?
- t6
- p3
- t0
- k?m
- p10
- oxm
- kd
- t8
- p5
- t0
- t9
- p5
- t0
- kdm
- cxm
- k-m
- c1m
- k<m
- c0m
- kP
- t10
- p4
- t0
- t12
- p7
- t0
- kPm
- kY
- t14
- p7
- t0
- kYm
- slm
- t16
- p9
- t0
- kbm
- k.m
- ke
- t18
- p3
- t0
- kem
- p10
- oxm
-
- sd
- t20
- p4
- t0
- sdm
- shm
- kxm
- spm3
- kxm
- shm
- kxm
- sem
- slm
- kbm
- sg
- t21
- p4
- t0
- sgm
- shm
- kxm
- k-m
- c1m
- kQ
- t22
- p6
- t0
- kQm
- p10
- oxm
-
- KP
- Pp
- t24
- p4
- t0
- sdm
- shm
- kxm
- k-m
- spm
- kxm
- k+m
- spm
- kxm
- shm
- spm
- c3m
- spm
- k=m
- kxm
- k-m
- spm
- ssm
- sem
- ssm
- kxm
- ke
- t26
- p3
- t0
- kem
- p10
- oxm
-
- spm
- kb
- t30
- p3
- t0
- kbm2
- k/m
- sgm
- c1m
- sdm2
- c3m
- slm2
- shm
- kxm2
- sgm
- shm
- kxm
- k/m
- sgm
- c1m
- sdm
- c3m
- slm2
- sh
- t32
- p4
- t0
- shm
- ssm
- sem
- ssm
- kxm
- sdm
- ke
- t38
- p4
- t0
- kem
- p10
- oxm
-
- ke
- t34
- p4
- t0
- kem
- p10
- oxm
-
- t36
- p3
- t0
-
- kPm
-
- ze
- t102
- p10
- t0
- zxm
- zem
-
- e
- q
-
- BLURB
- 1`We are going to solve the equation:
- 1`#@|x-1|=2x@.
- 2`We open the &Equations& window and write the problem.
- 2`#To write an absolute value sign press the &|& key or
- 2`#use the on-screen button.
- 3`As usual after formulating the problem we press &ENTER&.
- 6`We ask for a hint at the absolute value sign.
- 8`We consider two cases:
- 8`#"$x-1<0⁄x-1≥0"$.
- 9`#We add the condition:
- 9`#"$x-1<0"$
- 9`#to the domain
- 9`#(Press &Shift&+&D& or the on-screen button).
- 10`We create the second case.
- 12`#We click on the button to
- 12`#open the &Breakdown into cases& panel.
- 12`The mouse is pointing at the button.
- 14`We press the &Add a new case& button.
- 14`The mouse is pointing at the button.
- 16`#The program copies the contents of the previous case.
- 16`#We have to modify the domain condition.
- 18`We press &ENTER& to confirm the breakdown.
- 20`We solve each case separately.
- 21`We substitute the value for "$x"$ into the domain condition.
- 22`#This is a contradiction.
- 22`#We press the &Contradiction& button.
- 24`#Using mouse we move to
- 24`#the &case 1& window and work there.
- 26`We press &ENTER& to check our solution.
- 30`We continue transformations.
- 32`#The domain condition is an identity,
- 32`#so we can remove it.
- 34`#This is the final result.
- 34`#We press "&ENTER&"
- 34`#&without making any changes& in the expression.
- ;34`We press the &Answer& button.
- 36`Now the problem is solved.
- 38`We press &ENTER& again.
-
- 101`#We show how to use 2xy.
- 101``#"The presentation proceeds automatically."
- 101``#To move yellow panels use the mouse.
- 101`#Press ENTER on the KEYBOARD to continue.
-
- 102`#In a moment the &Examples& window will appear.
- 102`You can watch the same presentation again, or
- 102`#load the next example, or
- 102`#close the window and solve your own problem.
-
-